DOI: 10.1002/ejic.200700349

Vanadium(IV) and Oxidovanadium(IV) and -(V) Complexes with Soft Thioether Coordination – Synthesis, Spectroscopic and Structural Studies

Andrew L. Hector, [a] William Levason, [a] Annie J. Middleton, [a] Gillian Reid, *[a] and Michael Webster [a]

Keywords: Vanadium / Thioether / Structural studies

VOCl₃ reacts with the thioethers RS(CH₂)₂SR (R = Me, Et or *i*Pr) and 1,4-dithiane to form the first examples of V^V thioether complexes, the highly reactive, intensely coloured [VOCl₃(dithioether)] which have been characterised by ¹H and ⁵¹V NMR, IR and UV/Vis spectroscopy. Combining VOCl₃ with [9]aneS₃ gives [VOCl₃(κ^2 -[9]aneS₃)] which, upon treatment with SbCl₅ gives [VOCl₂(κ^3 -[9]aneS₃)][SbCl₆]. Vanadium *K*-edge extended X-ray absorption fine structure (EXAFS) studies on three examples provided partial structural analyses for these very unstable compounds. Reaction of VCl₄ with O(SiMe₃)₂ in CH₂Cl₂/MeCN followed by addition of RS(CH₂)₂SR (R = Me or Et) produced [VOCl₂{RS(CH₂)₂SR}]. The crystal structure of [{VOCl₂-

 $[MeSCH_2CH_2SMe)]_4]$ reveals a unique tetrameric V_4O_4 core with each vanadium also coordinated to a chelating dithioether and two Cl ligands to complete the distorted octahedral geometry. Under rigorously anhydrous conditions VCl_4 reacts with $RS(CH_2)_2SR$ (R = Me, Et, $\emph{i}Pr$, Ph), 1,4-dithiane or [9]aneS $_3$ to form [VCl $_4$ (thioether)] which are assigned as six-coordinate distorted octahedral species on the basis of their spectroscopic characterisation. In some cases trace hydrolysis of these compounds provides an alternative route to the [VOCl $_2$ (dithioether)] complexes.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)

Introduction

Vanadium has a very rich coordination chemistry owing in part to the accessibility of a range of oxidation states. However, the ease with which vanadium can undergo a redox switch between oxidation states, combined with its lability, leads to significant synthetic challenges in preparing pure materials, especially in the +4 and +5 oxidation states. These higher oxidation states of vanadium are dominated by oxido species and the majority of neutral ligand complexes known are with hard O- or N-donor ligands. [1-3] Examples of high oxidation state vanadium complexes with softer, neutral σ -donor ligands such as thio- or selenoethers are extremely rare - no VV derivatives are known and the only structurally characterised example with VIV is the distorted octahedral vanadyl species [VOCl₂([9]aneS₃)].^[4,5] The lower oxidation state VIII and VII thioether complexes are well established, $^{[5-8]}$ but reports of $V^{\rm IV}$ thioethers contain very limited data.^[9,10] We note that much early work on phosphane complexes of VCl₄ is now known to be erroneous (see for example ref.[11] for a thorough discussion of the problems) due to the failure to recognise the ease of reduction to VIII or the hydrolysis to VOCl2 adducts, and the over-reliance on qualitative EPR spectra from incompletely characterised samples. In a recent paper concerned with VOCl₃ adducts with neutral N- or O-donor ligands,^[3] we briefly noted that in dry CH₂Cl₂ solution VOCl₃ is reduced by SR_2 (R = Me, Et, nBu or Ph), PhSCH₂CH₂SPh, Me₂Se or MeSeCH2CH2SeMe. In an effort to investigate more fully the chemistry of V^{IV} and V^V precursors with soft thioether ligands and to establish whether the ligand structure is important in determining the course of the reactions, we have conducted a systematic study of VOCl₃, VOCl₂ and VCl₄ with the dithioethers RSCH₂CH₂SR (R = Me, Et, iPr), 1,4-dithiane and the macrocyclic [9]aneS₃ and [18]aneS₆. We report here the results of this investigation including the IR, UV/Vis and NMR (for VV) spectroscopic characterisation of the resulting complexes, structural studies via vanadium K-edge EXAFS measurements, and a crystal structure of an extremely unusual metallocyclic vanadyl(IV) species, [{VOCl₂(MeSCH₂CH₂SMe)}₄]·CH₂Cl₂.

Results and Discussion

VOCl₃ Complexes: VOCl₃ and 2,5-dithiahexane react in anhydrous CH₂Cl₂ to give a dark red-brown solution from which [VOCl₃(MeSCH₂CH₂SMe)] was obtained as a red-black powder by precipitation with *n*-hexane (Scheme 1). The freshly prepared complex is very soluble in chlorocarbons and extremely moisture-sensitive (turning into a blue oil in air), and decomposes even in the dark in ca. 48 h, becoming dull purple and completely insoluble in chlorocarbons. The red-black [VOCl₃(RSCH₂CH₂SR)] (R = Et or

[[]a] School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK E-mail: wxl@soton.ac.uk gr@soton.ac.uk

Scheme 1.

iPr) are obtained similarly, although they are even less stable and decompose in a few hours, which prevented microanalytical data being obtained, but are spectroscopically very similar to the dithiahexane complex. In contrast, VOCl₃ in CH₂Cl₂ solution was immediately reduced by PhSCH₂CH₂SPh, cis-MeSCH=CHSMe or MeS(CH₂)₃SMe to pinkish VIII-containing products (based upon their UV/ Vis spectra). The red-black [VOCl₃(1,4-dithiane)] was obtained by treating a solution of 1,4-dithiane with a stoichiometric amount of VOCl₃ and precipitation with *n*-hexane, but using an excess of VOCl₃ gave the brown dinuclear [(VOCl₃)₂(1,4-dithiane)]. The reaction of thiacrowns with VOCl₃ is also very dependent on the ligand used. Both [9]aneS₃ and [18]aneS₆ react with excess VOCl₃ in CH₂Cl₂ to precipitate dark red-brown solids of composition $[VOCl_3([9]aneS_3)]$ and $[(VOCl_3)_2([18]aneS_6)]$ respectively, but [12]aneS₄ or [14]aneS₄ afford pale purple powders which lack any VO features in the IR spectra and their UV/ Vis spectra suggest six-coordinate [VCl₃(thiacrown)], similar to complexes made directly from [VCl₃(thf)₃].^[8] The [VOCl₃([9]aneS₃)] complex is stable for some weeks in the dark and the dry solid can be handled quickly in air, although it slowly turns blue in moist air (ca. 5 min) – the hydrolysis product was identified by IR and UV/Vis spectroscopy as [VOCl₂([9]aneS₃)].^[4,5] Attempts to abstract chloride from [VOCl₃([9]aneS₃)] using FeCl₃ were unsuccessful, but when this reaction was repeated using SbCl₅, which is a much stronger Lewis acid, the brown-purple [VOCl₂([9]aneS₃)][SbCl₆] was formed in good yield. The complexes of the thiacrowns are very poorly soluble in chlorocarbons, which prevented solution spectroscopic studies.

The IR spectra of [VOCl₃(RSCH₂CH₂SR)] (Table 1) exhibit strong bands at ca. 970–1000 cm⁻¹ assigned as v(VO), and strong features at 400-300 cm⁻¹ due to v(VCl), which are similar to those observed in six-coordinate VV complexes of N- and O-donor ligands.[3] The UV/Vis spectra of the solid compounds are dominated by intense L-V charge-transfer transitions above ca. 19000 cm⁻¹ (usually with weak shoulders to lower energy), generally similar in band energies to those reported for N- or O-donor ligands, [3] suggesting that $\pi(C1) \rightarrow V$ transitions are mainly responsible for the strong features. The insoluble materials produced by decomposition of the solids exhibited intense, poorly defined features across the visible region, presumably indicating mixed-valence materials. In anhydrous CH₂Cl₂ solution all three complexes exhibit single, quite sharp ⁵¹V NMR resonances with chemical shifts only slightly (5-15 ppm) to low frequency of VOCl₃, and the spectra are unchanged on cooling the samples to 190 K. These values compare with much more negative resonances found for complexes with N- or O-donors[3,12] and are consistent with soft V-S coordination in these complexes. Hydrolysis in solution leads to the production of [VOCl₄]⁻ and [VO₂Cl₂]⁻, readily identified by their ⁵¹V NMR resonances at δ +48 and -362 ppm respectively. [12] The ¹H NMR spectrum of [VOCl₃(MeSCH₂CH₂SMe)] at 295 K in CD₂Cl₂ shows single $\delta(Me)$ and $\delta(CH_2)$ resonances due to coordinated dithioether, to high frequency of those of the uncomplexed ligand, and the single $\delta(Me)$ and $\delta(CH_2)$ resonances indicate a single geometric isomer with the sulfur donor atoms trans to Cl, giving fac chlorines (Scheme 1). On cooling the solution to 190 K, pyramidal inversion at the sulfur

Table 1. Selected spectroscopic data on oxidovanadium complexes.

Complex	$v(VO) [cm^{-1}]^{[a]}$	$\nu(VCl) \text{ [cm}^{-1}]^{[a]}$	$\delta(^{51}V)^{[b]}$	$E_{ m max}~{ m [cm^{-1}]^{[c]}}$
[VOCl ₃ (MeSCH ₂ CH ₂ SMe)]	976	376, 350, 327	-14	14200 (sh), 18800, 21500 (sh), 27000
[VOCl ₃ (EtSCH ₂ CH ₂ SEt)]	977	366, 349, 323	- 7	15000 (sh), 20800, 27800 (sh)
[VOCl ₃ (<i>i</i> PrSCH ₂ CH ₂ S <i>i</i> Pr)]	998	370, 330, 310	+5.5	15300 (sh), 20960, 28600
[VOCl ₃ (1,4-dithiane)]	988	374, 320	+18	16100 (sh), 20000, 27400
$[(VOCl_3)_2(1,4-dithiane)]$	1012	402(sh), 372, 338	+10.5	15530 (br), 18850, 23200, 27000 (sh)
$[VOCl_3([9]aneS_3)]$	974	371, 345	[d]	15000 (br), 19800 (br), 29410
[VOCl ₂ ([9]aneS ₃)][SbCl ₆]	1020	418	[d]	15600 (br), 18660, 24400 (sh)
$[(VOCl_3)_2([18]aneS_6)]$	978	393, 372, 348	[d]	14600 (sh), 18700 (br), 30700
[VOCl ₂ (MeSCH ₂ CH ₂ SMe)]	975, 837	350, 319	_	13500 (sh), 19000, 27500
[VOCl ₂ (EtSCH ₂ CH ₂ SEt)]	985, 830	360, 304	_	13500 (sh), 18200, 27000

[a] Nujol mull. [b] CH₂Cl₂ solution relative to neat external VOCl₃ at 300 K. [c] Diffuse reflectance, diluted with BaSO₄. [d] Insufficiently soluble.

slows and four coordinated $\delta(\text{Me})$ resonances and a complex pattern of overlapping $\delta(\text{CH}_2)$ signals are present, consistent with three invertomers (meso-1, meso-2 and DL) in a complex lacking axial symmetry. In the presence of added ligand, separate resonances for "free" and coordinated dithioether are seen, showing ligand exchange is slow on the NMR timescale at ambient temperatures. The ¹H NMR spectra of the [VOCl₃(RSCH₂CH₂SR)] (R = Et or iPr) exhibit generally similar behaviour, although even at the lowest temperatures studied (190 K) the ${}^3J_{\rm HH}$ couplings within the Et and iPr groups are not resolved, only broad singlets are observed for the different protons – this broadening may be due to the proximity to the quadrupolar ⁵¹V nucleus.

The dark red [VOCl₃(1,4-dithiane)] has similar physical and spectroscopic properties to the acyclic dithioether complexes, and is assigned a similar six-coordinate geometry, probably with chelating dithiane. The spectroscopic properties of the dark brown [(VOCl₃)₂(1,4-dithiane)] are rather different, notably $\upsilon(VO)$ is at $1020~cm^{-1}$, in the range observed for five-coordinate VOCl₃ adducts. [3] 1,4-Dithiane often favours a bridging coordination mode [13] and this may account for the formation of a 2:1 complex uniquely with this ligand.

The [VOCl₃([9]aneS₃)] complex is very poorly soluble in chlorocarbons, MeNO₂ or MeCN and decomposed by strong donor solvents such dmf, which has prevented solution spectroscopic studies. Three possible structures for this complex are the seven-coordinate [VOCl₃(κ^3 -[9]aneS₃)], sixcoordinate $[VOCl_3(\kappa^2-[9]aneS_3)]$ or $[VOCl_2(\kappa^3-[9]aneS_3)]Cl$. The spectroscopic properties are similar to those of [VOCl₃(RSCH₂CH₂SR)], and the EXAFS data (below) are consistent with $[VOCl_3(\kappa^2-[9]aneS_3)]$. The failure of the complex to react with FeCl₃ (to form [VOCl₂(κ^3 -[9]aneS₃)]-[FeCl₄]) rules out the cationic formulation, and whilst seven-coordination is known for a very small number of VV compounds, all seem to contain small bite-angle ligands such as κ²-NO₃ or κ²-S₂CNR₂^[1] and it seems highly unlikely here. Hence the data support a $[VOCl_3(\kappa^2-[9]aneS_3)]$ formulation. The 2:1 [18]aneS₆ complex probably has a similar vanadium core. The dark brown-purple [VOCl₂([9]aneS₃)][SbCl₆] formed by reaction of VOCl₃, SbCl₅ and [9]aneS₃ in anhydrous CH₂Cl₂ has υ(VO) at 1020 cm⁻¹, higher than that in the neutral [VOCl₃([9]aneS₃)] (974 cm⁻¹) and a very strong, broad band at 343 cm⁻¹ assigned as the T₁₁₁ mode of the [SbCl₆] ion.

The instability of the [VOCl₃(RSCH₂CH₂SR)] in solution and the insolubility of the macrocyclic complexes prevented all attempts to obtain crystals for X-ray structure determination. We therefore collected vanadium K-edge EXAFS data on three examples. Data were collected in transmission mode from freshly prepared (within 24 h) samples of [VOCl₃(MeSCH₂CH₂SMe)], [VOCl₃([9]aneS₃)] and [VOCl₃(1,4-dithiane)] diluted with BN (Experimental section). The data were all fitted to a four-shell model of $1 \times O$, $2 \times Cl$ (trans S), $1 \times Cl$ (trans O), and $2 \times S$, corresponding to a six-coordinate environment with the thioether sulfur atoms trans to Cl (see Experimental Section for details). The results are summarised in Table 2. Figure 1 shows a typical example of the background subtracted EX-AFS data and the Fourier transform. The data on the three complexes are in excellent agreement. Few complexes of $VOCl_3$ have been structurally characterised but the d(V-O)of ca. 1.6 Å in the thioether complexes compares well with those in $[VO_2Cl_2]^-$ (1.58 (av) Å], [14] $[VOCl_2([9]aneS_3)]$ $(1.579(4) \text{ Å})^{[4]}$ and [VOCl₃{(2-nitrophenyl)pyridine-2-

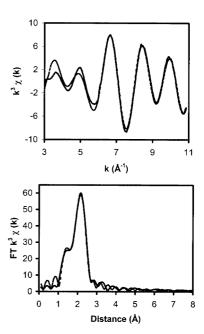


Figure 1. Vanadium K-edge k^3 -weighted EXAFS (top) and Fourier-transformed EXAFS (bottom) for [VOCl₃(1,4-dithiane)]/boron nitride. Solid lines refer to data, dashed lines to calculated fit.

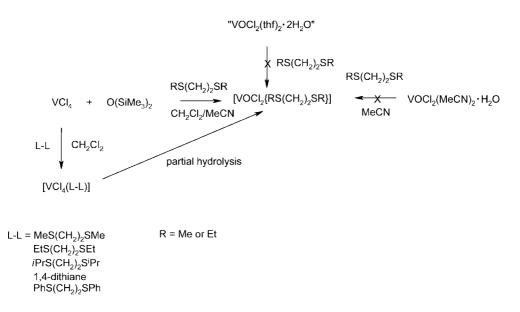
Table 2. Vanadium K-edge EXAFS data.[a]

Complex	d(V-O) [Å] (O)	$2\sigma^2$ [Å ²] ^[b]	d(V-Cl) [Å] (2Cl)	$2\sigma^2$ [Å ²] ^[b]	d(V-Cl) [Å] (Cl)
[VOCl ₃ (MeSCH ₂ CH ₂ SMe)]	1.583(5)	0.002(1)	2.249(6)	0.009(2)	2.385(18)
[VOCl ₃ (1,4-dithiane)]	1.581(6)	0.003(1)	2.220(4)	0.003(5)	2.49(4)
[VOCl ₃ ([9]aneS ₃)]	1.593(6)	0.003(1)	2.265(9)	0.013(2)	2.442(16)
(continued)	$2\sigma^2 [\mathring{A}^2]^{[b]}$	d(V-S) [Å] (2S)	$2\sigma^2 [\mathring{A}^2]^{[b]}$	$E_{ m f}^{ m [c]}$	$R\%^{[d]}$
[VOCl ₃ (MeSCH ₂ CH ₂ SMe)]	0.009(2)	2.68(4)	0.053(11)	-10.8(9)	29.1
[VOCl ₃ (1,4-dithiane)]	0.036(12)	2.66(5)	0.08(3)	-12.6(9)	20.0
[VOCl ₃ ([9]aneS ₃)]	0.013(4)	2.69(3)	0.052(9)	-10.5(11)	32.0

[a] Standard deviations in parentheses. [b] Debye–Waller factor. [c] The difference between the calculated Fermi level energy and the theoretically known values for the element. [d] Defined as $[\int (\chi^T - \chi^E)k^3 dk / \int \chi^E k^3 dk] \times 100$ (where T is theoretical and E is experimental).

carboxamide}] (1.572(1) Å].^[14] For comparison d(V-O) in solid molecular VOCl₃ (133 K) is 1.562(7) Å and d(V-Cl) 2.125(3) and 2.124(2) Å.^[15] Two V-Cl shells were refined, the slightly shorter distances corresponding to the two chlorines *trans* to S, and the longer distance due to the one chlorine *trans* to V=O. The V-S distances at ca. 2.66–2.69 Å are significantly longer than V-S_{transCl} in both [{VOCl₂(MeSCH₂CH₂SMe)}₄] (2.48 Å) (Table 3) and [VOCl₂([9]aneS₃)] (2.47 Å). The Ti-S_{trans-Cl} distances in [TiCl₄(dithioether)] are 2.60–2.65 Å.^[16] The similarity of the distances within the three V^V complexes and the best fit statistical data also support the six-coordinate S₂Cl₃O donor sets for [VOCl₃([9]aneS₃)] and [VOCl₃(1,4-dithiane)] proposed above based upon the spectroscopic data.

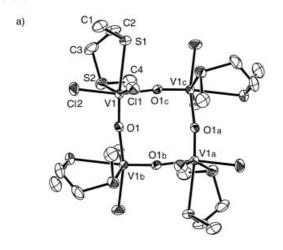
Table 3. Selected bond lengths $[\mathring{A}]$ and angles [°] for $[\{VOCl_2(MeSCH_2CH_2SMe)\}_4]\cdot CH_2Cl_2$. [a]


V1-O1	1.640(3)	V1-O1c	2.004(3)
V1-C11	2.288(1)	V1-C12	2.311(1)
V1-S1	2.662(1)	V1-S2	2.482(2)
S1–C1	1.810(6)	S1-C2	1.808(6)
S2-C3	1.813(5)	S2-C4	1.783(6)
O1-V1-O1c	93.7(2)	O1-V1-C11	106.97(11)
O1c-V1-C11	90.89(9)	O1-V1-C12	98.29(10)
O1c-V1-C12	166.15(8)	C11-V1-C12	92.30(5)
O1-V1-S2	92.25(11)	O1c-V1-S2	90.50(9)
C11-V1-S2	160.60(5)	C12-V1-S2	82.08(5)
O1-V1-S1	168.56(11)	O1c-V1-S1	77.40(8)
C11-V1-S1	80.58(5)	C12-V1-S1	89.83(4)
S2-V1-S1	80.85(5)	V1-O1-V1b	168.6(2)

[a] Symmetry operations: b = y, -x, 2-z; c = -y, x, 2-z.

VOCl₂ Complexes: Red-brown crystals of $[\{VOCl_2(MeSCH_2CH_2SMe)\}_4]$ were initially obtained by storing a dilute CH_2Cl_2 solution of VCl_4 and $MeSCH_2CH_2$ -SMe in a freezer for a few days, and were found to have the unique tetranuclear structure described below. The crystals clearly form by hydrolysis and red-brown powders of $[\{VOCl_2(RSCH_2CH_2SR)\}_4]$ (R = Me or Et) can be isolated in modest yield by storing dilute CH_2Cl_2 solutions of VCl_4

and RSCH₂CH₂SR (after removal of precipitated [VCl₄(RSCH₂CH₂SR)] by filtration) in a freezer for 1–2 weeks (Scheme 2). Hydrolysis does not stop at these species and after several months blue oils form. The robust (blue) [VOCl₂([9]aneS₃)] can be made by hydrolytic oxidation of [VCl₃([9]aneS₃)],^[4] or by decomposition of [VOCl₃([9]aneS₃)] (above), but these routes are not viable for the acyclic dithioethers. However, reaction of VCl₄ with one molequiv. of O(SiMe₃)₂ in anhydrous CH₂Cl₂ containing a small amount of MeCN, followed by addition of RSCH₂CH₂SR produced the [{VOCl₂(RSCH₂CH₂SR)}₄] in good yield. The MeCN presumably stabilises the VOCl₂ intermediate, since the reaction in neat CH₂Cl₂ does not work. Excess MeCN should be avoided since it reduces VCl₄ to V^{III}.[17] The [{VOCl₂(RSCH₂CH₂SR)}₄] are readily hydrolysed in solution and decomposed by alcohols or acetone, but the pure, dry solids can be handled quickly in air. They are paramagnetic with $\mu_{eff} = 1.8 \,\mu_{B}$ and exhibit v(V=O) at 975, 837 (R = Me) or 985, 830 (R = Et) cm⁻¹ (Table 1) consistent with the V–O···V bridged structure (below).


Many vanadyl compounds are known; the majority are blue or green, discrete five-coordinate square pyramids or distorted octahedra (5 + 1 coordination), or sometimes chain polymers with trans O=V···O=V··· links.[1,2] A limited number of orange-brown polymers with polydentate Schiff known.[1,18] also The structure $[{VOCl_2(MeSCH_2CH_2SMe)}_4]$ is quite different (Table 3, Figure 2) and has a tetranuclear V₄O₄ core. The structure can either be described as based upon square pyramidal VOCl₂(MeSCH₂CH₂SMe) units with apical chlorine, linked through asymmetric cis oxygen bridges into a tetramer, or as a puckered square with vanadium at the corners and asymmetric [V–O 1.640(3), 2.004(3) Å], non-linear [V–O–V 168.6(2)°] oxygen bridges along the edges. The coordination about each vanadium is completed by two terminal chlorines and a chelating dithioether [S-V-S angle 80.85(5)°]

Scheme 2.

Eurjic european Journal of Ingragatic Chemistry

which has the DL configuration. In addition to the disparate V-O distances (the differences are 0.4 Å), the bond lengths around the vanadium centres reveal that the trans influence of the ligands on this hard metal is O>Cl>S. Thus V-S_{transO} 2.662(1) Å, whilst V-S_{transOl} 2.482(2) Å and V-Cl_{transO} 2.311(1) Å, V-Cl_{transS} 2.288(1) Å. For comparison, the bond lengths in the six-coordinate (5 + 1) $[VOCl_2([9]aneS_3)]$ are V-O 1.579(4), V-Cl 2.295(5), and V-S 2.634(5), 2.470(5) Å.[4] A search of the CCDB revealed that the structure of the $[\{VO(SNNS)\}_4]$ [SNNS = the dianion of N,N'-bis(o-mercaptophenyl)ethylendiamine] also contains a V_4O_4 core, but with a boat conformation.^[19] The closest analogue to the structure of [{VOCl₂-(MeSCH₂CH₂SMe)₄] appears to be [{TiOCl₂([15]crown-5)}4], a hydrolysis product of [TiCl₄([15]crown-5)], which contains a planar Ti₄O₄ ring with coordination at each Ti completed by two terminal chlorines and a κ^2 -crown ether.[20]

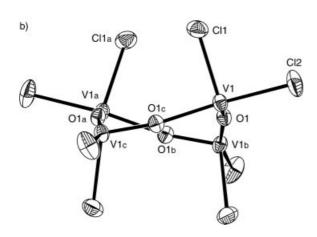


Figure 2. (a) Structure of the tetrameric molecule [$\{VOCl_2(MeSCH_2CH_2SMe)\}_4$]· CH_2Cl_2 . Thermal ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity. Symmetry operations: a = -x, -y, z; b = y, -x, 2-z; c = -y, x, 2-z; (b) edge view of the V_4O_4 core within the tetramer.

VCl₄ Complexes: The reactions of the dithioethers RSCH₂CH₂SR (R = Me, Et, iPr), 1,4-dithiane and MeS(CH₂)₃SMe in a 1:1 mol. ratio in rigorously anhydrous CH₂Cl₂ solution at or below ambient temperatures formed

dark violet [VCl₄(dithioether)], which precipitated from the solutions. Using excess dithioether, addition of neat ligand to concentrated solutions of VCl₄ (which generates considerable heat) or gently heating CH2Cl2 solutions, produced lighter coloured materials, which contained substantial amounts of VIII. Gentle reflux of the CH2Cl2 preparative solutions in the presence of excess ligand produced complete reduction to pale lilac six-coordinate VIII complexes. Using the weaker donor PhSCH₂CH₂SPh produced an unstable dark purple solid [VCl₄(PhSCH₂CH₂SPh)], but the related ligand PhS(CH₂)₃SPh does not form a V^{IV} complex; under similar reaction conditions it produced a pale lilac powder with the UV/Vis spectrum of a VIII complex $(E_{\text{max}} 11970, 18500, 28570 \text{ cm}^{-1}).^{[21]}$ The reaction of VCl₄ with [9]aneS₃ in CH₂Cl₂ precipitates the purple solid [VCl₄([9]aneS₃)] which is insoluble in common solvents and when dry may be handled quickly in air without visible decomposition. Refluxing a mixture of VCl₄ with [9]aneS₃ in CH₂Cl₂ results in the known bright pink complex [VCl₃([9]aneS₃)].^[5] Repeated attempts to isolate $[VCl_4(SR_2)_2]$ (R = Me, Et, nBu or Ph) by reaction of VCl₄ with SR₂ in a $1:\le 2$ molar ratio in anhydrous CH₂Cl₂ solution failed. Excess thioether brings about immediate reduction to VIII, as described previously.[7,22,23]

The solid [VCl4(dithioether)] are extremely moisture-sensitive, evolving yellow fumes in air and turning green-blue. However, in contrast to the V^V [VOCl₃(dithioether)] complexes, they are stable in the dry box for several weeks. The complexes are very poorly soluble in chlorocarbons (cf. [TiCl₄(dithioether)])[16] and decomposed by acetone, alcohols or thf. The complexes are paramagnetic with magnetic moments $\mu_{\rm eff} = 1.7 - 1.9 \,\mu_{\rm B}$, consistent with d¹ V^{IV}. The diffuse reflectance spectra show broad features at ca. 19000–20000 cm⁻¹ with a weaker shoulder to low energy (ca. 17000 cm⁻¹). The original work on these complexes assigned these features as d-d transitions and ascribed the splitting to the low symmetry $(C_{2\nu})^{[9]}$ However, a d-d assignment seems at odds with the very intense colours and we propose that these bands are charge transfer $\pi(C1)\rightarrow V$ (main band) and $\pi(S) \rightarrow V$ (shoulder), respectively. These assignments are supported by approximate calculations based upon the optical electronegativity model.[21,24,25] The spectrum of $[VCl_6]^{2-}$ contains the ${}^2T_{2g} \rightarrow {}^2E_g$ transition at 15500 cm⁻¹ and the lowest charge-transfer band, $\pi(Cl)\!\!\to\!\! V(t_{2g})$ at 20500 $cm^{-1}.^{[24]}$ The lowest energy chargetransfer band (E_{max}) for a d¹ complex in octahedral symmetry is predicted by the Equation (1):

$$E_{\text{max}}/\text{cm}^{-1} = 30000\{\chi_{\text{opt}}(L) - \chi_{\text{opt}}(M)\} - (14/3)B$$
 (1)

Using the normal Pauling electronegativities for Cl and S, and estimating the Racah parameter (*B*) for Cl = 650 cm⁻¹, leads to a prediction of $\pi(\text{Cl}) \rightarrow V(t_{2g})$ ca. 20000 cm⁻¹ and $\pi(\text{S}) \rightarrow V(t_{2g})$ ca. 17000 cm⁻¹. The very significant low energy shift in the charge-transfer bands between [TiCl₄(dithioether)]^[16] and [VCl₄(dithioether)] is also consistent with the much greater ease of reduction of the vanadium complexes.

Conclusions

The results reported here constitute the first detailed characterisation of a series of soft, neutral thioether ligand complexes of VIV and VV. The architecture of the thioether ligands plays a significant role in governing the vanadium oxidation state produced and the relative stabilities of the complexes. Soft donor ligand complexes of VV are extremely unusual (phosphanes, arsanes, selenoethers and some thioethers bring about immediate reduction to VIV and/or VIII). [3,7,10] The tetrameric structure observed for [{VOCl₂(MeSCH₂CH₂SMe)}₄] is a new structure type for vanadyl(IV), and contrasts with the discrete distorted octahedral geometry in the (coordinatively saturated) [VOCl₂-([9]aneS₃)]. The successful isolation of these complexes indicate that under appropriate conditions and with judicious choice of ligand architecture, it may be possible to obtain limited examples of analogues with other soft donor ligands (e.g. selenoethers or arsanes).

Experimental Section

All reactions were conducted under anhydrous conditions and under dry dinitrogen using standard vacuum line Schlenk and glove-box techniques. VOCl₃ and VCl₄ (Aldrich) were used as received. Solvents were dried by distillation from CaH₂ (CH₂Cl₂) or Na/benzophenone ketyl (hexane and diethyl ether). The thioethers RSCH₂CH₂SR (R = Me, Et, iPr, Ph) and MeS(CH₂)₃SMe were made by literature methods^[26] and dried and stored over molecular sieves. 1,4-dithiane, [9]aneS₃ and [18]aneS₆ were obtained from Aldrich and were dried by melting in vacuo immediately before use. Physical measurements were made as described previously^[3] and microanalytical data were obtained from the microanalytical laboratory of Strathclyde University. All measurements were made on freshly prepared samples and the samples of the majority of the compounds were prepared several times and checked for consistency of the spectroscopic data.

IVOCl₃(MeSCH₂CH₂SMe)I: A solution of VOCl₃ (0.23 g, 1.3 mmol) in dry CH₂Cl₂ (5 mL) was added to a solution of 2,5-dithiahexane (0.16 g, 1.3 mmol) in dry CH₂Cl₂ (20 mL). The dark red solution was concentrated to ca. 5 mL in vacuo, dry *n*-hexane (5 mL) added and the red-black solid isolated by filtration, and dried in vacuo. Yield 0.18 g, 46%. C₄H₁₀Cl₃OS₂V (295.5): calcd. C 16.3, H 3.4; found C 16.1, H 3.6. ¹H NMR (300 MHz, CD₂Cl₂, 300 K): δ = 2.5 (s, 3 H, CH₃), 3.0 (s, 2 H, CH₂); (193 K): δ = 2.36, 2.39, 2.47, 2.60 (s, CH₃), 3.15–3.33 (br. m, CH₂) ppm. ⁵¹V NMR (CH₂Cl₂, 300 K): δ = -14 (w_{1/2} = 800 Hz, sharpens on cooling but shift unchanged) ppm. UV/Vis (CH₂Cl₂): E_{max} (ε _{mol}, cm⁻¹ dm³ mol⁻¹) = 17120 (sh), 20160 (930), 21050 (1150), 25600 (1500), 31050 (sh), 33330 (2700) cm⁻¹.

IVOCl₃(EtSCH₂CH₂SEt)]: This compound was best made by adding excess VOCl₃ to the ligand in CH₂Cl₂ and pumping to dryness in vacuo in the dark. Yield 65%. As made it is a red-black powder, very soluble in chlorocarbons. Even in the dark in the glove box the complex decomposes in less than 24 h becoming insoluble in chlorocarbons. ¹H NMR (300 MHz, CD₂Cl₂, 300 K): δ = 1.46 (br. s, 3 H, CH₃), 2.96 (br. s, 2 H, CH₂), 3.20 (br. s, 2 H, CH₂) ppm. ⁵¹V NMR (CH₂Cl₂, 300 K): δ = -7.1 (w_{1/2} = 850 Hz); (223 K): δ = -7.5 (w_{1/2} = 700 Hz) ppm.

[VOCl₃(*i*PrSCH₂CH₂S*i*Pr)]: This complex was made similarly to the one above, obtained as a red-black powder, yield 62%. ¹H

NMR (300 MHz, CD₂Cl₂, 300 K): δ = 1.2 (br., 6 H, CH₃), 1.40 (br., H, CH), 3.0 (br. s, 2 H, CH₂); (190 K): δ = 1.17, 1.18 (sh), 1.31, 1.39, 2.95, 3.08 (all broad and with no couplings resolved) ppm. ⁵¹V NMR (CH₂Cl₂, 300 K): δ = -5.4 (w_{1/2} = 700 Hz); (213 K): δ = -6.1 (w_{1/2} = 700 Hz) ppm. UV/Vis (CH₂Cl₂): E_{max} = 15300 (sh), 20960, 28600, 30500 cm⁻¹.

[VOCl₃(1,4-dithiane)]: A solution of VOCl₃ (0.23 g, 1.3 mmol) in dry CH₂Cl₂ (5 mL) was added to a solution of freshly sublimed 1,4-dithiane (0.16 g, 1.3 mmol) in dry CH₂Cl₂ (20 mL). The dark red solution was concentrated to ca. 5 mL in vacuo, dry *n*-hexane (5 mL) added and the red-black solid isolated by filtration, and dried in vacuo. Yield 0.22 g, 58%. C₄H₈Cl₃OS₂V (293.5): calcd. C 16.4, H 2.8; found C 16.3, H 3.2. ¹H NMR (300 MHz, CD₂Cl₂, 300 K): δ = 3.34 (br., CH₂); (190 K): δ = 3.63 (br., 2 H), 3.05 (br., 2 H) ppm. ⁵¹V NMR (CH₂Cl₂, 300 K): δ = +18 (w_{1/2} = 300 Hz); (213 K): δ = +38. UV/Vis (CH₂Cl₂): E_{max} = 16000 (sh), 18100, 21200, 26000 cm⁻¹.

[(VOCl₃)₂(1,4-dithane)]: 1,4-Dithiane (0.12 g, 1.0 mmol) was freshly sublimed in vacuo and then dissolved in dry CH₂Cl₂ (15 mL) and added to a solution of VOCl₃ (0.36 g, 2.0 mmol) in dry CH₂Cl₂ (10 mL). The very dark brown solution was stirred for 1 h at room temperature and then concentrated in vacuo to ca. 5 mL. Dry *n*-hexane (5 mL) was added by cannula and the dark brown powder which separated was filtered off and dried in vacuo. Yield 0.32 g, 67%. C₄H₈Cl₆O₂S₂V₂ (466.8): calcd. C 10.3, H 1.7; found C 10.3, H 1.1. ¹H NMR (300 MHz, CD₂Cl₂, 300 K): δ = 3.1 (s, CH₂) ppm. ⁵¹V NMR (CH₂Cl₂, 300 K): δ = +10.5 (w_{1/2} = 100 Hz), little changed on cooling ppm. UV/Vis (CH₂Cl₂): E_{max} = 18200 (sh), 21370, 27170 cm⁻¹.

[VOCl₃([9]aneS₃)]: [9]aneS₃ (0.09 g, 0.5 mmol) was dissolved in dry CH₂Cl₂ (15 mL) and added to a solution of VOCl₃ (0.09 g, 0.5 mmol) in dry CH₂Cl₂ (10 mL). A dark red-brown solid separated immediately. The dark suspension was concentrated to ca. 5 mL in vacuo, and the red-brown solid filtered off, rinsed with dry n-hexane (5 mL) and dried in vacuo. Yield 0.17 g, 94%. C₆H₁₂Cl₃OS₃V (353.6): calcd. C 20.4, H 3.4; found C 20.5, H 3.7. {When the dry solid is exposed to air it turns pale green-blue in ca. 5 min and this product was identified as [VOCl₂([9]aneS₃)]. IR (Nujol): $\tilde{v} = 960 \text{ cm}^{-1}$ (VO), 344, 307 (sh) (VCl) cm⁻¹. UV/Vis (dr in BaSO₄): $E_{\text{max}} = 14450$, 25000 sh, 30120 cm⁻¹.}

[VOCl₂([9]aneS₃)][SbCl₆]: VOCl₃ (0.09 g, 0.5 mmol) and SbCl₅ (0.15 g, 0.5 mmol) were dissolved in dry CH₂Cl₂ (15 mL), and stirred for 10 min, after which a solution of [9]aneS₃ (0.09 g, 0.5 mmol) in CH₂Cl₂ (10 mL) was added by syringe. The mixture slowly became brown and then deep purple in colour and after about 30 min contained a deep purple-brown precipitate in a pale yellow solution. The solid was filtered off, rinsed with CH₂Cl₂ (5 mL) and dried in vacuo. Yield 0.30 g, 91%. $C_6H_{12}Cl_8OS_3SbV$ (652.7): calcd. C 11.0, H 1.9; found C 10.7, H 2.2. IR (Nujol): \tilde{v} = 1020 v(VO), 418 (VCl), 343 $v(SbCl_6)$ cm⁻¹.

[(VOCl₃)₂([18]aneS₆)]: Was made similarly to the [9]aneS₃ complex above using a 2.5:1 ratio of VOCl₃:[18]aneS₆ giving a dark redbrown powder. Yield 75%. $C_{12}H_{24}Cl_6O_2S_6V_2$ (707.3): calcd. C 20.4, H 3.4; found C 20.5, H 3.7.

[{VOCl₂(MeSCH₂CH₂SMe)}₄]. Method 1: VCl₄ (0.19 g, 1.0 mmol) was dissolved in a mixture of anhydrous CH₂Cl₂ (20 mL) and MeCN (0.5 mL), Si(OMe₃)₂ (0.18 g, 1.0 mmol) added, and the solution stirred for 15 min. MeSCH₂CH₂SMe (0.12 g, 1.0 mmol) was then added, the solution stirred for 1 h and then concentrated in vacuo to ca. 5 mL. The brown solid was separated by filtration and dried in vacuo. Yield 0.15 g, 45%.

Method 2: VCl₄ (0.38 g, 2.0 mmol) was dissolved in anhydrous CH₂Cl₂ (15 mL) and MeSCH₂CH₂SMe (0.24 g, 2.0 mmol) in CH₂Cl₂ (10 mL) added producing a very dark solution and some precipitate. The solid was filtered off and the solution stirred at room temperature under nitrogen for 24 h, and then refrigerated for 1 week. The brown solid formed was filtered off and dried in vacuo. Yields variable – typically 10–15%. C₄H₁₀Cl₂OS₂V·CH₂Cl₂ (345.2): calcd. C 17.4, H 3.5; found C 17.2, H 3.7. $\mu_{\rm eff}$ (298 K) = 1.81 μ_B.

[VOCl₂(EtSCH₂CH₂SEt)]: Was made similarly by Method 1 above. Yield 55%. $C_6H_{14}Cl_2OS_2V$ (288.0): calcd. C 25.0, H 4.9; found C 24.6, H 5.3. μ_{eff} (298 K) = 1.80 μ_{B} .

[VCl₄(MeSCH₂CH₂SMe)]: VCl₄ (0.38 g, 2.0 mmol) was dissolved in anhydrous CH₂Cl₂ (15 mL) and MeSCH₂CH₂SMe (0.24 g, 2.0 mmol) in CH₂Cl₂ (10 mL) added producing a very dark solution and some precipitate. Concentration in vacuo to ca. 5 mL, followed by filtration produced a dark solid which became a purple-black powder on drying in vacuo. Yield 0.50 g, 80%. C₄H₁₀Cl₄S₂V (315.0): calcd. C 15.2, H 3.2; found C 14.8, H 3.8. IR (Nujol): \bar{v} = 379 (sh), 362 (br), 316 (sh) (VCl) cm⁻¹. UV/Vis (*dr* in BaSO₄): $E_{\rm max}$ = 17240 (sh), 19500, 29400, 38500 cm⁻¹. $\mu_{\rm eff}$ (298 K) = 1.70 μ_B.

[VCl₄(EtSCH₂CH₂SEt)]: Dark purple powder made similarly to the above. Yield 85%. $C_6H_{14}Cl_4S_2V$ (343.1): calcd. C 21.0, H 4.1; found C 21.4, H 4.3. IR (Nujol): $\tilde{v} = 365$ (br), 346, 295 (sh) (VCl) cm⁻¹. UV/Vis (*dr* in BaSO₄): $E_{max} = 17000$ (sh), 19650, 28400, 37750 cm⁻¹. μ_{eff} (298 K) = 1.68 μ_{B} .

[VCl₄(iPrSCH₂CH₂SiPr)]: Dark purple powder made similarly. Yield 70%. $C_8H_{18}Cl_4S_2V \cdot CH_2Cl_2$ (456.0): calcd. C 23.7, H 4.4; found C 22.9, H 4.0. IR (Nujol): $\tilde{v} = 389$, 344 (br), 290 (VCl) cm⁻¹. UV/Vis (*dr* in BaSO₄): $E_{max} = 17850$ (sh), 19600, 29400, 39525 cm⁻¹. μ_{eff} (298 K) = 1.70 μ_{B} .

[VCl₄(1,4-dithiane)]: Dark red-black powder was made similarly. Yield 55%. C₄H₈Cl₄S₂V (313.0): calcd. C 15.4, H 2.6; found C 15.3, H 2.9. IR (Nujol): \tilde{v} = 384, 351, 312 (VCl) cm⁻¹. UV/Vis (dr in BaSO₄): $E_{\rm max}$ = 17600 (sh), 20000, 28250 cm⁻¹. $\mu_{\rm eff}$ (298 K) = 1.73 $\mu_{\rm B}$.

[VCl₄{MeS(CH₂)₃SMe}]: Dark purple powder. Yield 85%. $C_5H_{12}Cl_4S_2V$ (329.0): calcd. C 18.3, H 3.7; found C 18.3, H 3.9. IR (Nujol): $\hat{v} = 368$ (br) 330 (br) (VCl) cm⁻¹. UV/Vis (*dr* in BaSO₄): $E_{\text{max}} = 17000$ (sh), 20100, 29100, 39600 cm⁻¹.

[VCl₄(PhSCH₂CH₂SPh)]: A cold solution of VCl₄ (0.19 g, 1.0 mmol) in CH₂Cl₂ (30 mL) was added slowly to a solution of PhSCH₂CH₂SPh (0.25 g, 1.0 mmol) in CH₂Cl₂ (10 mL) with vigorous stirring. An intensely purple solution was produced, which was immediately concentrated to 10 mL in vacuo, and the dark solid which precipitated isolated by filtration, and dried in vacuo. Yield 0.28 g, 63%. If the solution is stirred for 1 h before work-up significant amounts of V^{III} (UV/Vis evidence) are present. C₁₄H₁₄Cl₄S₂V·CH₂Cl₂ (524.1): calcd. C 34.4, H 3.5; found C 34.5, H 3.5. IR (Nujol): $\tilde{v} = 372$, 344 (br), 304 (VCl) cm⁻¹. UV/Vis (dr in BaSO₄): $E_{\text{max}} = 17250$ (sh), 19200, 29400 cm⁻¹.

X-ray Crystallography: Crystals of [{VOCl₂(MeSCH₂CH₂SMe)}₄]· CH₂Cl₂ were obtained from a CH₂Cl₂ solution by cooling to about -20 °C for several days (see text). Data collection used a Nonius Kappa CCD diffractometer with confocal mirror monochromated Mo- K_a X-radiation ($\lambda = 0.71073$ Å) and with the crystal held at 120 K in a cooled nitrogen gas stream. Structure solution was straightforward^[27–29] with H atoms introduced into the model in calculated positions except for the dichloromethane solvate where

no H atoms were included. The inclusion of the TWIN/BASF^[28] commands made a small improvement to the data fit. Selected bond lengths and angles are given in Table 3 with crystallographic data in Table 4.

Table 4. Crystallographic data for $[{VOCl_2(MeSCH_2CH_2SMe)}_4] \cdot CH_2Cl_2$.

Formula	$C_{17}H_{42}Cl_{10}O_{4}S_{8}V_{4} \\$		
\overline{M}	1125.25		
Crystal system	tetragonal		
Space group (no.)	<i>I</i> 4 (82)		
a [Å]	12.3183(17)		
b [Å]	12.3183(17)		
c [Å]	13.964(3)		
$U[\mathring{A}^3]$	2118.8(6)		
Z^{\perp}	2		
$\mu(\text{Mo-}K_{\alpha}) \text{ [mm}^{-1}]$	1.906		
F(000)	1132		
Total no. reflections	8567		
Unique reflections	2424		
$R_{\rm int}$	0.051		
No. of parameters, restraints	103, 2		
$R_1^{[a]}[I_o > 2\sigma(I_o)]$	0.041		
R_1 [all data]	0.052		
$wR_2^{[a]}[I_o > 2\sigma(I_o)]$	0.086		
wR_2 [all data]	0.091		

[a] $R_1 = \Sigma ||F_0| - |F_c||/\Sigma |F_0|$. $wR_2 = [\Sigma w(F_0^2 - F_c^2)^2/\Sigma wF_0^4]^{1/2}$.

CCDC-642012 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

EXAFS Data Collection and Treatment: Vanadium K-edge EXAFS data were collected at ambient temperature on station 7.1 of the Daresbury SRS fitted with a silicon 110 monochromator and operating in transmission mode. Data were recorded from samples prepared <24 h previously, sealed in foil-wrapped flasks under N₂ and stored in the cold. Samples of the complexes were diluted ca. 1:3 with dry, powdered BN and pressed between Kapton windows in 1 mm thick cells. Two or three data sets were collected from each sample and then averaged. Background subtraction was performed with the PAXAS^[30] package and the k^3 -weighted EXAFS were fitted using Excurve.[31] The [VOCl₃{MeS(CH₂)₂SMe}], [VOCl₃(1,4dithiane)] and [VOCl $_3(\kappa^2$ -[9]aneS $_3$)] EXAFS were modelled with a cluster of C_s symmetry with oxygen and one Cl on the mirror plane and an overall geometry close to octahedral. The models were tested for both five- and six-coordination, the best fit statistical data supporting six-coordination with S₂Cl₃O donor sets.

Acknowledgments

We thank the Engineering and Physical Sciences Research Council (EPSRC) for support (EP/C001176/1) and the Director of the Daresbury Laboratory for provision of facilities for EXAFS studies under award ref. 47036. We also thank Dr S. G. Fiddy for help with the EXAFS data collection and Charlotte D. Beard for some preliminary studies.

www.eurjic.org

^[1] F. A. Cotton, G. Wilkinson, M. Bochmann, C. A. Murillo, *Advanced Inorganic Chemistry*, 6th ed., Wiley, New York, **1998**.

^[2] D. C. Crans, J. J. Smee in *Comprehensive Coordination Chemistry II* (Eds.: J. A. McCleverty, T. J. Meyer), **2004**, *4*, 175–239.

^[3] C. D. Beard, R. J. Barrie, J. Evans, W. Levason, G. Reid, M. D. Spicer, Eur. J. Inorg. Chem. 2006, 4391–4398 and refs. therein.

- [4] G. R. Willey, M. T. Lakin, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1991, 1414–1416.
- [5] S. C. Davies, M. C. Durrant, D. L. Hughes, C. Le Floc'h, S. J. A. Pope, G. Reid, R. L. Richards, J. R. Sanders, J. Chem. Soc. Dalton Trans. 1998, 2191–2198.
- [6] M. C. Durrant, S. C. Davies, D. L. Hughes, C. Le Floc'h, R. L. Richards, J. R. Sanders, N. R. Champness, S. J. A. Pope, G. Reid, *Inorg. Chim. Acta* 1996, 251, 13–14.
- [7] M. W. Duckworth, G. W. A. Fowles, P. T. Greene, J. Chem. Soc. A 1967, 1592–1597.
- [8] C. D. Beard, L. Carr, M. F. Davis, J. Evans, W. Levason, L. D. Norman, G. Reid, M. Webster, *Eur. J. Inorg. Chem.* 2006, 4399–4406.
- [9] R. J. H. Clark, W. Errington, Inorg. Chem. 1966, 5, 650-656.
- [10] K. L. Baker, D. A. Edwards, G. W. A. Fowles, R. G. Williams, J. Inorg. Nucl. Chem. 1967, 29, 1881–1885.
- [11] a) F. A. Cotton, J. Lu, T. Ren, *Inorg. Chim. Acta* 1994, 215, 47–54; b) F. A. Cotton, J. Lu, *Inorg. Chem.* 1995, 34, 2639–2644.
- [12] W. Priebsch, D. Rehder, Inorg. Chem. 1985, 24, 3058-3062.
- [13] a) Y. Yamamoto, S. Sakamoto, Y. Ohki, A. Usuzawa, M. Fujita, T. Mochida, *Dalton Trans.* 2003, 3534–3540; b) M. O. Santiago, J. R. Sousa, I. C. N. Diogenes, L. G. F. Lopes, E. Meyer, E. E. Castellano, J. Ellena, A. A. Batista, I. S. Moreira, *Polyhedron* 2006, 25, 1543–1548.
- [14] a) D. Fenske, A.-F. Shihada, H. Schwab, K. Dehnicke, Z. Anorg. Allg. Chem. 1980, 471, 140–146; b) T. A. Kabanos, A. D. Keramidas, A. Papaioannou, A. Terzis, Inorg. Chem. 1994, 33, 845–846.
- [15] J. Galy, R. Enjalbert, G. Jugie, J. Strähle, J. Solid State Chem. 1983, 47, 143–150.
- [16] W. Levason, B. Patel, G. Reid, V.-A. Tolhurst, M. Webster, J. Chem. Soc. Dalton Trans. 2000, 3001–3006.

- [17] M. W. Duckworth, G. W. A. Fowles, R. A. Hoodless, J. Chem. Soc. 1963, 5665–5673.
- [18] M. Kojima, H. Taguchi, M. Tsuchimoto, K. Nakajima, Coord. Chem. Rev. 2003, 237, 183–196.
- [19] W. Tsagkalidis, D. Rodewald, D. Rehder, *Inorg. Chem.* 1995, 34, 1943–1945.
- [20] W. Levason, M. C. Popham, G. Reid, M. Webster, *Dalton Trans.* 2003, 291–294.
- [21] A. B. P. Lever, *Inorganic Electronic Spectroscopy*, Elsevier, Amsterdam, 2nd ed. 1984.
- [22] R. J. H. Clark, G. Natile, *Inorg. Chim. Acta* **1970**, *4*, 533–541.
- [23] B. E. Bridgland, G. W. A. Fowles, R. A. Walton, J. Inorg. Nucl. Chem. 1965, 27, 383–389.
- [24] R. D. Bereman, C. H. Brubaker Jr, *Inorg. Chem.* 1969, 8, 2480–2484
- [25] G. C. Allen, K. D. Warren, Struct. Bonding (Berlin) 1971, 9, 49–138.
- [26] F. R. Hartley, S. G. Murray, W. Levason, H. E. Soutter, C. A. McAuliffe, *Inorg. Chim. Acta* 1979, 35, 265–277.
- [27] G. M. Sheldrick, SHELXS-97, program for crystal structure solution, University of Göttingen, Germany, 1997.
- [28] G. M. Sheldrick, SHELXL-97, program for crystal structure refinement, University of Göttingen, Germany, 1997.
- [29] G. M. Sheldrick, SADABS, Bruker-Nonius area detector scaling and absorption correction (Version 2.10), Bruker AXS Inc, Madison, WI, USA, 2003.
- [30] N. Binsted, *Program for the analysis of X-ray absorption spectra, version 3.33*, University of Southampton, UK, **1998**.
- [31] N. Binsted, Excurve 9.271, University of Southampton, UK, 2003.

Received: March 28, 2007 Published Online: June 18, 2007